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Abstract

Multiple imputation (MI) has become the most popular approach in handling missing data. 

Closely associated with MI, the fraction of missing information (FMI) is an important parameter 

for diagnosing the impact of missing data. Currently γm, the sample value of FMI estimated from 

MI of a limited m, is used as the estimate of γ0, the population value of FMI, where m is the 

number of imputations of the MI. This FMI estimation method, however, has never been 

adequately justified and evaluated. In this paper, we quantitatively demonstrated that E(γm) 

decreases with the increase of m so that E(γm) > γ0 for any finite m. As a result γm would 

inevitably overestimate γ0. Three improved FMI estimation methods were proposed. The major 

conclusions were substantiated by the results of the MI trials using the data of the 2012 Physician 

Workflow Mail Survey of the National Ambulatory Medical Care Survey, USA.
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1. Introduction

Multiple imputation (MI) becomes the most popular approach to accounting for missing data 

(Carpenter & Kenward, 2013, Dohoo, 2015, Rezvan, Lee, & Simpson, 2015, Rubin, 1987, 

Van Buuren, 2012). Closely associated with MI, fraction of missing information (FMI) is an 

important parameter for diagnosing the effects of data missingness (Rubin, 1987). FMI can 

be interpreted as the fraction of information about Q due to non-response, where Q is the 

quantity of interest (Rubin, 1987). As MI become increasingly important, the importance of 

FMI is also increasing. The best known use of FMI is to define the relative efficiency (RE) 

of MI as RE = (1 + γ0/m)−1/2, where γ0 is the population value of FMI and m is the number 

of imputations (Rubin, 1987). Based on this RE, Rubin concluded that m ≤ 5 would be 

sufficient for MI (Rubin, 1987). Little et al. as well as Wagner suggested that FMI be used as 

an alternative tool for measuring data missing data or the response rate (Little et al., 2016, 

Wagner, 2010). Siddique, Harel, Crespic, and Hedekerd (2014) used FMI to verify the 

missing data mechanisms. The most common practice of FMI estimation is to use γ0 = γm, 

where γ0 is the estimated value of γ0 and γm is the FMI obtained from MI of a given m, e.g. 

(Khare, Little, Rubin, & Schafer, 1993, Lewis et al., 2014, Schafer, 2001, Schenker et al., 

2006). However, the accuracy of the γ0 = γm method has not been adequately evaluated. This 

paper is to quantify possible biases of γ0 = γm and to improve FMI estimation methodology 

if necessary and possible.

Established by Rubin in 1987, the current FMI paradigm is defined by Equations (1)–(11) 

below:

Qm = 1
m m

1
Qi, (1)

where subscript m and ∞ stands for a finite and infinite m, the subscript 0 for the population 

value, the subscript i for the ith imputation, and the bar hat for the parameter’s mean.

Bm = 1
m − 1 1

m
(Qi − Qm)2 (2)

Um = 1
m 1

m
Ui (3)

Tm = Um + 1 + 1
m Bm, (4)
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where B, U, and T are the between-imputation, within-imputation, and the total variances.

r = 1 + 1
m

Bm
Um

, (5)

where r is the fractional variance increase due to data missingness.

v = (m − 1) 1 + 1
r

2
, (6)

where v is the degrees of freedom.

γm = r + 2/(v + 3)
r + 1 (7)

T∞ = U∞ + B∞ (8)

γ∞ =
B∞
T∞

(9)

T0 = U0 + B0 (10)

γ0 =
B0
T0

. (11)

Equation (11) cannot be used to calculate γ0 in practice because B0, U0, and T0 are usually 

unknown. No researchers have provided an equation that explicitly links γm and γ0. The 

justification for using γ0 = γm is not available from Equations (1)–(11).

Assume γ∞ = γ0. For γ0 = γm to be valid, E(γm) = γ0 must be true. For E(γm) = γ0 to be 

true, E(γm) must be independent of m. To understand E(γm), let the same MI of a given m 
be repeated for j times. Denote the γm from each MI repeat as γm1, γm2, γm3, …, γmj. By 

definition, the expected value is the sum of all possible values each multiplied by the 

probability of its occurrence (Hogg, McKean, & Craig, 2013). Therefore, E(γm) can be 

defined as:
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E(γm) = lim
j ∞

1
j j

1
γm j . (12)

Equation (12) shows that E(γm) can be understood as the ultimate mean of γm when j 
becomes infinity. If E(γm) is independent of m, we should have E(γ2) = E(γ3) = … = E(γm) 

= γ0, and the use of γ0 = γm would be justified. If E(γm) depends on m, we should have 

E(γ2) ≠ E(γ3) ≠ … ≠ E(γm) ≠ γ0. The use of γ0 = γm may not be justified if the difference 

between E(γm) and γ0 is intolerably big.

Rubin indicated that the mean of γm can be regarded as γ0 [1 page 143], underlining an 

assumption that E(γm) is independent of m. Harel briefly mentioned that γm “tends to 

decrease as m increases” without providing any details (Harel, 2007). Although Harel’s 

statement favours E (γm) ≠ γ0, it cannot be a base for disproving γ0 = γm because it might be 

acceptable to use γ0 = γm if the decrease of γm with the increase of m is statistically 

negligible. To date the justifications for using γ0 = γm is still missing.

For FMI estimation, Harel’s 2007 paper (Harel, 2007) is important in that it pointed out that, 

unlike γm that “tends to decrease as m increases,” the quantity Bm/(Um + Bm) “does not tend 

to decrease as m increases” (Harel, 2007). Harel used γ0 = Bm/(Um + Bm) to estimate FMI in 

his research (Harel, 2007). The goal of Harel’s paper was not to find a better FMI estimation 

method per se and his discussion on γ0 = Bm/(Um + Bm) was brief. Most researchers have not 

used Harel’s method for FMI estimation probably because most people may have treated 

Harel’s method as being research-specific rather than a method that may potentially be 

universally used for FMI estimation.

In this study, we examined the relationships between m, γm, γ∞, and γ0, quantified the 

decrease of γm with the increase of m, quantified the biases of γ0 = γm, and proposed 

improved methods for FMI estimation. Only univariate FMI definition will be examined in 

this paper even though multi-variate FMI definition may exist. The major conclusions were 

substantiated by the MI trials using the data of the 2012 Physician Workflow Mail Survey 

(PWS) of the National Ambulatory Medical Care Survey (NAMCS). This paper focuses on 

MI approach only even though it may be possible to estimate FMI via a non-MI approach 

(Savalei & Rhemtulla, 2012, Zheng & Lo, 2008).

2. The relationships between m, γm, γ∞, and γ0

2.1. The condition for γ∞ = γ0

To use γm for estimating γ0, one must assume γ∞ = γ0. Most researchers simply treat γ∞ 
and γ0 as synonyms (e.g. He et al., 2016). But they are not. Imagine a population of 

imputations (POI) is generated by repeating the imputation of the same model on the same 

data for an infinite number of times. An MI is simply a sample of the POI with sample size 
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m. The sample value and the population value of FMI for the POI are γm and γ∞, 

respectively. The population for γ0, however, is not POI but the population of the sampling 

units of the survey. A γ∞ is inseparably linked to an MI, but a γ0 can be independent of MI. 

The γ0 may be estimated by MI as well as other methods such as maximum likelihood 

(Savalei & Rhemtulla, 2012, Zheng & Lo, 2008). Using Equations (5)–(7), one can prove 

that the condition for γ∞ = γ0 is Bm/Um = B0/U0. When we use MI to estimate γ0, we have 

to assume γ∞ = γ0, which is probably why γ∞ and γ0 are often treated as synonyms in MI 

analyses. In this paper, we will assume γ∞ = γ0 because we use MI to estimate γ0.

2.2. Bm/Um is independent of m

Equation (7) that defines γm does not have m as a factor. Combining Equations (5), (6), and 

(7) gives an expanded definition of γm with m as one of the independent factors affecting 

γm:

γm =

1 + 1
m

Bm
Um

+ 2/ (m − 1) 1 + 1

1 + 1
m

Bm
Um

2

+ 3

1 + 1
m

Bm
Um

+ 1
. (13)

Equation (13) shows that γm is a function of three factors, i.e. γm = F(m, Bm, Um). In 

Equation (13), Bm and Um always appear together as Bm/Um. Letting cm = Bm/Um, then γm 

becomes a function of two factors, i.e. γm = F(m, cm).

Whether cm is independent of m is important in understanding the m–γm relationship. If cm 

depends on m, the direct effects of m on γm would be confounded by the indirect effects of 

m on γm via m’s effects on cm, which in turn could be due to m’s effect on Bm, Um or both. 

If cm is independent of m, then the m–γm relationship would be greatly simplified.

In order to establish that cm is independent of m, we need to prove E(Bm/Um) = B0/U0. 

Equation (2) indicates that the relationship between m and Bm is that between the sample 

size n and the variance (s2) so that E(Bm) is independent of m, i.e. E(Bm) = B0 (Serfling, 

1980). Equation (3) indicates that the relationship between m and Um is that between the 

sample size n and the sample mean x so that E(Um) is independent of m, i.e. E(Um) = U0 

(Hogg et al., 2013). Jensen’s Inequality (Hogg et al., 2013) determines that E(1/Um) ≥ 1/

E(Um). Therefore E(Bm/Um) = E(Bm)E(1/ Um) ≥ E(Bm)/E(Um) = B0/U0, or E(Bm/Um) ≥ 

B0/U0. Our simulation studies show that the maximum difference between E(Bm)/E(Um) and 

E(Bm/Um) is less than 0.1%, which is negligible in virtually any statistics work. We can 

safely regard E(Bm/Um) = B0/U0 as a fact for the purpose of studying the m– γm 

relationship. The cm’s independence of m is thus proved. The subscript m can be removed 

from cm. As a result, we can indeed letting cm = Bm/Um be a constant c in Equation (13) and 

make γm become a function of the single factor m, i.e. γm = F(m).
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2.3. The γm = F(m,γ0) equation

When m goes infinite, γm becomes γ0. Our goal is to establish the mathematic relationship 

between γm and γ0 at a finite m, which is currently missing in published literatures. In the 

discussions above, we have showed that it is mathematically legitimate to letting cm be a 

constant c in studying the m– γm relationship because cm is independent of m. What is the 

best value to choose for c to obtain the most truthful m–γm relationship? The answer is: c = 

E(Bm/Um) = B0/U0. If and only if c = E(Bm/Um) = B0/ U0, the m–γm relationship as 

determined by Equation (13) would reflect the true m–γm relationship. From Equations (10) 

and (11) we can obtain B0/U0 = γ0/(1 − γ0). Replacing Bm/Um in Equation (13) with γ0/(1 

− γ0), we obtain an equation that directly links γm to γ0 as follows:

γm = E(γm) = F(m, γ0) =

1 + 1
m

γ0
1 − γ0

+ 2/ (m − 1) 1 + 1

1 + 1
m

γ0
1 − γ0

2

+ 3

1 + 1
m

γ0
1 − γ0

+ 1
. (14)

Establishment of equation is a significant step forward in understanding the relationship 

between m, γm, and γ0 because it links the three factors in the same equation for any m, 

finite or infinite.

For a given analysis of a given dataset, γ0 is a constant. When we repeat the same MI of a 

given m for j times, the γm value from each repeat of the MI will not change when the γm is 

determined by Equation (14). In other words, we will have γm1 = γm2 = γm3 = … γmj = 

E(γm) (see Equation (12)). In other words, the γm value obtained from Equation (14) will be 

E(γm). For different data and analyses, γ0 is a variable. Equation (14) shows that E(γm) is a 

function of the two factors, m and γ0, i.e. E(γm) = F(m, γ0).

3. The decrease of E(γm) with the increase of m

3.1. E(γm) > γ0 for any finite m

We all know that E x  is independent of n and equals to μ, which provides the theoretical 

base for μ = x (Hogg et al., 2013). The use of γ0 = γm implies the assumption that E(γm) = 

γ0. Using Equation (14), the m–E(γm) relationship curve can be constructed for any given 

γ0. Figure 1 presents the m–E(γm) relationship curves for γ0 = 0.15 and 0.2. Based on 

Figure 1, for the first time in MI research, we can explicitly state this important fact: E(γm) 

decreases with the increase of m. The decrease of E(γm) with the increase of m can be 

interpreted as follows: For a given dataset with a given MI model, the ultimate mean of γm, 

which is the mean of an infinite number of individual γm values obtained from repeating the 

MI of the given m for an infinite number of times, would always be greater than the γ0. Of 

course what is called “the ultimate mean” here is the E(γm) (Hogg et al., 2013). Therefore, 

by showing E(γm) decreases with the increase of m, we have proved that E(γm) > γ0 for any 
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finite m (Figure 1). The fact that E(γm) > γ0 is further illustrated by more data in Table 1 for 

a wider range of m values and more γ0 values.

3.2. The bias of the current FMI estimation method

The fact that E(γm) > γ0 dictates that the current FMI estimation method γ0 = γm must be 

biased. One achievement of this paper is that we successfully quantified the bias of the 

current FMI estimation method. We use Dγ, the percentage difference between E(γm) and 

γ0 as the parameter to measure this bias, i.e.:

Dγ = 100
γm − γ0

γ0
. (15)

Table 1 presents the Dγ values at different γ0 and m values as determined by Equation (14). 

At a given m, Dγ differs at different γ0 values (Table 1). For m = 2, Dγ is 80.59% and 

53.64% for γ0 = 0.2 and 0.01, respectively (Table 1). When γ0 increased from 0.001 to 0.6, 

Dγ first increases with the increase of γ0, reaches a peak, and then decreases (Table 1 and 

Figure 2). The value of the γ0 at which Dγ reaches the peak differs with m (data not shown). 

For m = 5, the maximum Dγ value of 25.31% occurs at γ0 = 0.23, and the minimum Dγ 
value of 16.53% occurs at γ0 = 0.6 (Figure 2(b)). In other words, one could overestimate 

FMI by 25% at m = 5 if the current method is used. A bias of this magnitude cannot and 

should not be ignored. Development of a better FMI estimation method is indeed necessary.

3.3. The γm decrease rate: smaller at larger m

We use Rγd, the percentage rate of the γm decrease per unit m, to measure the rate of the γm 

decrease:

RDγ = 100
γm − γm + 1

γm + 1
. (16)

RDγ is affected by both m and γ0 (Table 1 and Figure 2, b1 and b2). At m = 5, RDγ is 3.87% 

and 2.96% for γ0 = 0.2 and 0.01, respectively (Table 1). Figure 2(b) show that RDγ increases 

initially, reaches a peak, and then decreases as γ0 increases from 0.001 to 0.6. For m = 2, the 

maximum RDγ = 23.91% occurs at γ0 = 0.15 (Figure 2(b)). For m = 5, the maximum RDγ = 

3.88% occurs at γ0 = 0.21 (data not shown). The gradual reduction of RDγ makes it possible 

for choosing a sufficient m when the m-driven γm reduction becomes negligibly small.

4. Improved methods for γ0 estimation

Regarding γ0 = γm as the control, any method that gives more accurate FMI estimation than 

this control will be considered as an improved method. Three improved methods are 

proposed below.

Pan and Wei Page 7

Cogent Math Stat. Author manuscript; available in PMC 2019 March 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



4.1. Improved method 1: γ0 = γm ≥ 100

The control method is to use γ0 = γm regardless the size of m. The first improved method is 

to choose a sufficiently large m when use γ0 = γm. Data in Figure 1 show that E(γm) 

approaches γ0 as m gets larger. Therefore, γm would estimate γ0 with an adequate accuracy 

when m is sufficiently large. Various criteria have been used to determine the sufficient m 
(Bodner, 2008, Graham, Olchowski, & Gilreath, 2007, Hershberger & Fisher, 2003, Pan, 

Wei, Shimizu, & Jamoom, 2014, Royston, 2004, Rubin, 1987). An adequately accurate 

estimation of γ0 using γ0 = γm offers another criterion for determining a sufficient m. As 

measured by RDγ, the gain in reducing the bias from increasing a unit m becomes smaller at 

a greater m. Using Equation (14), we can prove the bias of the default method as measured 

by Dγ would be about 1% or less for any reasonable γ0 values when m is greater than 100. 

We arbitrarily choose a bias of ≤1% as an acceptable level and recommend m ≥100 as being 

sufficient for an adequately accurate estimation of γ0 using γ0 = γm. This method can be 

expressed as γ0 = γm ≥ 100.

4.2. Improved method 2: γ0 = γm m/ m   + 1

Calculating γm for different m and γ0 combinations using Equation (14), one will find the 

following approximation stands well for m ≥10:

γm ≈ m + 1
m γ0 . (17)

From Equation (17), we obtain the following method of estimating γ0 from γm:

γ0 = m
m + 1γm . (18)

For those who may be interested, this method may be proven by resolving γ0 from Equation 

(14) using Taylor series expansion approximation. An advantage of this method is that one 

could use it to have a more accurate FMI estimation from the m and the γm information 

available in an earlier publication that uses a small m and γm to estimate FMI.

4.3. Improved method 3: γ = cm/(cm + 1), where cm = Bm/Um

In Section 2.2, we proved that E(Bm/Um) = B0/U0. In other words, Bm/Um is an unbiased 

estimation of B0/U0. As a result, Equation (19) below is a better γ0 estimation than γ0 = γm:

γ0 =
cm

1 + cm
. (19)
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where cm = Bm/Um. Harel used this method to estimate γ0 for his study on two-stage MI 

(Harel, 2007). However, the justification for this method discussed here was not available in 

Harel’s paper or any other published literature (Harel, 2007).

5. Results from MI trials of PWS12

5.1. Methods

PWS was a supplemental survey of NAMCS, which collects data about the provision and 

use of ambulatory medical care services in the United States (Lau, McCaig, & Hing, 2016). 

The 2012 PWS data (PWS12) were used for the MI trial, which had 2,567 responded 

physicians in the sample. PWS data can be accessed via NCHS Research Data Center (RDS) 

program (https://www.cdc.gov/rdc/index.htm).

MI was conducted on three variables representing the physician’s practice size at different 

scales, namely SIZE100, SIZE20, and SIZE5. The three variables had the same missing data 

percentage of 29% due to item non-responses. The hot-deck imputation method (Andridge 

& Little, 2010) was used. The RDS-released PWS12 data, which had 3.6% of missing values 

for SIZE after some of the missing values in PWS12 were replaced by the corresponding 

non-missing values for the same physician from the 2011 PWS data, were used as the hot-

deck donor. Two MI models denoted as MI-1 and MI-2 were used. MI-1 did not use any 

covariate in the imputation and the non-missing replacement values for the missing value 

were randomly chosen from entire donor dataset. MI-2 used PRIMEMM as the covariate in 

the imputation and the non-missing replacement values for the missing value were randomly 

chosen from the cell of the same PRIMEMM value in donor dataset. PRIMEMM was the 

physician’s primary employment type that was coded into nine categories for this research. 

The MIs had m = 3, 5, 10, 20, 30, 40, 60, 80, and 100, with each MI being repeated for 30 

times. Excluding m, there were 12 treatment combinations (3 imputed variables × 2 

imputation models × 2 analytic models). The hot-deck imputation method used in this study 

was similar to that used by the survey for creating the RDC-released PWS12 data. 

According to Rubin (1987, equation 4.3.8), the hot-deck bias can be expressed as E(B)= 

B(n1/n), where n is the number of the units of the full sample and n1 is the number of the 

units with observed values. Since the n1/n ratio is independent of m, the percentage fraction 

of the hot-deck bias would be a fixed value as long as the n1/ n ratio is fixed. Therefore the 

m–γm relationship obtained from the hot-deck-based MI trials should still be valid. One 

should be aware of the potential hot-deck bias when interpreting the results of this study.

The quantity of interest (Q) was the means of the SIZE100, SIZE20, and SIZE5. Two 

analytical models denoted as Anal-1 and Anal-2 were used. In Anal-1, Ui, the within-

imputation variance of the ith complete dataset generated by the MI, was the total variance 

of SIZE100, SIZE20, or SIZE5 in the ith dataset. In Anal-2, Ui was the variance of the ith 

dataset after the variance due to the effect of PRIMEMM was removed. Analyses were 

based on un-weighted data. Results obtained in this study were for research purpose only.

Barnard and Rubin (1999) suggested that, for making the statistical inferences in MI-

involved analyses, instead of using the degrees of freedom (v) as defined by Equation (6), 

the adjusted degrees of freedom (DFa) as proposed by their paper should be used where the 
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complete-data degrees of freedom is not sufficiently large. However in the γm definition, i.e. 

Equation (7), v does not function as the degrees of freedom per se but mealy as a 

mathematical value in the estimation of γm. We have found that replacing v in Equation (7) 

with DFa will result in an erroneous estimation of γm. Therefore we used v, instead of DFa, 

when used Equation (7) for the γm estimation in this study.

5.2. The γm decrease with the increase of m in the MI trials

Would the γm decrease due to the increase of m (see Section 2.1 and 3.1) be big enough to 

stand out from sampling errors and other noises in real-world MI analyses? The answer is 

yes, as demonstrated by the data in Figure 3. Figure 3 shows the effects of m on γm in 

SIZE100, SIZE20, and SIZE5 for the two MI models for Anal-2. In spite of the γm 

variations due to sampling errors as shown by the error bars in the graphs, the dominant 

trend was clear: γm decreased significantly as m increased from 3 to 100. The γm values at 

m = 3–40 were significantly greater than γ100 in most cases (Figure 3). These results 

suggest that the γm decrease with the increase of m is not ignorable in FMI estimation in 

real world data analyses.

5.3. Variation of γm, Bm, and Um

In establishing the MI framework, Rubin (1987) assumed that Um ≈ U0, which would be 

more likely to be true if the variance of Um is negligible. The authors did not find any 

information on the magnitude of Um variance in published literature. A detailed study on Bm 

variance was reported by Pan et al. (Pan et al., 2014). The variance of Bm was substantial 

when m < 30 (Pan et al., 2014). The variations in Bm and Um would inevitably lead to γm 

variation. As a result, when using γ0 = γm at an insufficient m, the inaccuracy of γ0 would 

not only come from E(γm) > γ0 but also from the variation of γm The possible bias from 

sampling-error-driven γm variation has not been given an adequate attention.

The coefficient of variations (CV) of Bm, Um, and γm are presented in Table 2. Both the 

imputations models and the analytic models affected the variations of γm, Bm, and Um 

(Table 2). CV of Um was much smaller—usually 1–10% that of Bm. The CV of Bm and γm 

were very similar, with the CV of γm being always slightly smaller than that of Bm. The 

greater the m, the smaller the variations of γm, Bm, and Um (Table 2). These results were in 

agreement with Harel’s conclusion (Hogg et al., 2013) that it is necessary to choose a 

sufficient m for MI to control the variations of γm. Due to the significant effects of the MI 

model and the analytic model on the variations of γm, Bm, and Um (Table 2), it may not be 

possible to propose a single m that fits all situations for controlling the variance of γm, Bm, 

and Um.

An advantage of using γ0 = γm ≥ 100 is that not only can this method reduce the E(γm) > γ0 

bias but also reduce γm variation because of a large m. The other two improved methods can 

effectively reduce or even eliminate the E(γm) > γ0 bias even if when m is small. However 

the γ0 inaccuracy may be a concern for any FMI estimation methods unless a sufficient m is 

chosen. Data in Figure 3 suggest that a ≥20 m may be necessary to reduce the γm variation 

to an acceptable level for using γ0 = γm m/ m + 1  and γ0 = cm/ cm + 1 .
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5.4. Comparison of different FMI estimation methods

Table 3 presents data for visualizing the performance of these three improved γ0 estimation 

methods described in Section 4 in comparison with the default method γ0 = γm in an 

example of real-world data analyses. The treatment combination of the MI trials was 

{SIZE20, MI-2, Anal-2}. The control values was the γm values at m = 3, 5, etc., which 

would be the FMI estimation when the default method was used. The γ100 value was used as 

the γ0 for the improved method γ0 = γm ≥ 100. The best γ0 was calculated by Equation (19) 

using (B100)/(U100) as the estimate of B0/U0, where B100 and U100 were the mean of the 30 

replicates of B100 and U100.

For m ≤ 80, all three improved methods performed better than the control method (Table 3). 

These results suggest that the three improved methods proposed in this paper can be used to 

replace the control method in real world data analyses. In general we recommend to use 

γ0 = cm/ 1 + cm , for it essentially eliminates the E(γm) > γ0 bias at all levels of m. But the 

two other methods may come in handy under certain circumstances. For example, if an 

earlier publication which had used m = 5 without providing Bm and Um values, one can 

simply use γ0 = γmm/ 1 + m  to convert the biased γ0 estimate of the paper into a more 

correct γ0 estimate.

6. Conclusions

In most published researches, γ∞ and γ0 are treated as synonyms. However, the two are 

different. The γ0 is independent of MI, whereas γ∞ is a parameter of MI. γ∞ equals to γ0 

only if Bm/Um = B0/U0. To use MI for FMI estimation, one has to assume γ∞ = γ0, which 

will also be the assumption here.

The γm decreases with the increase of m. We quantified the m–γm relationship. The 

magnitude and the rate of the γm decrease varies with m and γ0. At m = 2, γ2 is greater than 

γ0 by 50–81% depending on the γ0 level. At m = 5, the recommended m value as being 

sufficient by some (e.g. Rubin, 1987), γm is greater than γ0 by 20–25% when γ0 value 

ranges from 0.001 to 0.6. The decrease of γm with the increase of m determines that E(γm) 

> γ0 for any finite m. The results from the MI trials suggest that the volume of the γm 

decrease with increased m is not ignorable in real world data analyses in spite of the noises 

from sampling errors and other sources.

E(Bm) and E(Um) are independent of m. Therefore, the decrease of γm with the increase of 

m is not due to an indirect effect of m on E(Bm) and E(Um). As a result, it is not necessary to 

use the Bm and Um from the same MI for best γm estimation. Instead, one should use the 

best estimates of B0 and U0 available, which leads to the development of Equation (14) that 

links γm to γ0 directly.

The variation in γm can be substantial. The CV of γm was essentially identical with that of 

Bm, and CV of Um was 1–10% that of γm or Bm. The variation of γm is smaller as m gets 

bigger. The inaccuracy of FMI estimation due to γm variation should be concerned in FMI 

estimation when m is small regardless what method is used.
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The current method γ0 = γm may result in a substantial FMI overestimation when m is not 

sufficiently large. Three improved methods are proposed for estimating γ0 from MI of a 

finite m. These three methods are (1)γ0 = γm ≥ 100, (2)γ0 = γm m/ m + 1 , and (3)

γ0 = cm/ cm + 1 , where cm = Bm/Um. In our MI trials, all three improved methods gave more 

accurate γ0 estimates than γ0 = γm where m is less than 80.

When m is sufficiently large, say, m ≥ 100, all three methods should give a statistically 

sound estimation of γ0. When m is not sufficiently large, say, m < 100, the third method 

γ0 = cm/ cm + 1  should be one’s best option for γ0 estimation. The second method 

γ0 = γm m/ m + 1  has its value where Bm and Um are not available and the only values 

available to use for γ0 estimation are m and γm.
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Figure 1. 
The m–E(γm) relationship curve at γ0 = 0.2 and 0.15 as determined by Equation (14).
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Figure 2. 
Effects of γ0 levels onDγ as defined by Equation (15) and RDγ as defined by Equation (16): 

a. Dγ at m = 5; b. Dγ at m = 2.
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Figure 3. 
Effects of m on γm at δ = 29% for analytic model = Anal-2: MI model = MI-1; b. MI model 

= MI-2.
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Table 1.

Changes of E(γm), Dγ, and RDγ with the increase of m at different γ0 levels, where Dγ = 100(E(γm)−γ0 )/γ0 

and RDγ= 100(γm −γm+1)/γm+1

m
E(γm) RDγ Dγ

γ0 = 0.2 γ0 = 0.01 γ0 = 0.2 γ0 = 0.01 γ0 = 0.2 γ0 = 0.01

2 0.361 0.01536 23.33 14.12 80.59 53.64

5 0.250 0.01205 3.872 2.957 25.23 20.47

10 0.224 0.01102 1.0240 0.8502 11.84 10.16

20 0.212 0.01051 0.2664 0.2306 5.750 5.062

40 0.206 0.01025 0.0682 0.0602 2.837 2.528

60 0.204 0.01017 0.0306 0.0272 1.883 1.684

100 0.202 0.01010 0.0111 0.0099 1.126 1.010

200 0.201 0.01005 0.0028 0.0025 0.561 0.505
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Table 2.

Coefficient of variations (%) of Bm, Um, and γm for SIZE100

m
MI-1, Anal-1 MI-2, Anal-2

Bm Um γm Bm Um γm

3 20.24 0.185 20.19 1.52 0.0553 1.50

5 11.12 0.179 11.10 1.00 0.0200 1.01

10 7.75 0.135 7.75 0.88 0.0353 0.91

20 5.91 0.098 5.89 0.49 0.0282 0.48

30 6.24 0.077 6.26 0.24 0.0150 0.24

40 3.60 0.048 3.59 0.61 0.0180 0.59

60 2.74 0.058 2.73 0.39 0.0091 0.39

80 2.48 0.041 2.47 0.17 0.0062 0.17

100 2.45 0.037 2.45 0.15 0.0081 0.16
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Table 3.

Comparison of different γ0 estimation methods for SIZE20 with imputation model = MI-2 and analytic model 

= Anal-2 in the PWS12 MI trials. The best γ0 was calculated by Equation (19) using (B100)/(U100) as the 

estimate of B0/U0, where B100 and U100 were the mean of the 30 replicates of B100 and U100, respectively

m

SIZE20, MI-2, Anal-2

Control
γ0 = γm

Improved

γ0 = γm ≥ 100 γ0 = cm/ 1 + cm γ0 = γm m/ 1 + m

3 0.00379 0.00283 0.00284

5 0.00318 0.00265 0.00265

10 0.00286 0.00260 0.00260

20 0.00293 0.00279 0.00279

30 0.00278 0.00269 0.00269

40 0.00273 0.00267 0.00267

60 0.00277 0.00273 0.00273

80 0.00272 0.00269 0.00269

100 0.00270 0.00270 0.00267 0.00267

(∞) Best γ0: 0.00267
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